Identification of Chemicals that Cause Oxidative Stress in Oil Sands Process-Affected Water.
نویسندگان
چکیده
Oil sands process-affected water (OSPW) has been reported to cause oxidative stress in organisms, yet the causative agents remain unknown. In this study, a high-throughput in vitro Nrf2 reporter system was used, to determine chemicals in OSPW that cause oxidative stress. Five fractions, with increasing polarity, of the dissolved organic phase of OSPW were generated by use of solid phase extraction cartridges. The greatest response of Nrf2 was elicited by F2 (2.7 ± 0.1-fold), consistent with greater hydroperoxidation of lipids in embryos of Japanese medaka (Oryzias latipes) exposed to F2. Classic naphthenic acids were mainly eluted in F1, and should not be causative chemicals. When F2 was fractionated into 60 subfractions by use of HPLC, significant activation of Nrf2 was observed in three grouped fractions: F2.8 (1.30 ± 0.01-fold), F2.16 (1.34 ± 0.05-fold), and F2.25 (1.28 ± 0.15-fold). 54 compounds were predicted to be potential chemicals causing Nrf2 response, predominated by SO3+ and O3+ species. By use of high-resolution MS2 spectra, these SO3+ and O3+ species were identified as hydroxylated aldehydes. This study demonstrated that polyoxygenated chemicals, rather than classic NAs, were the major chemicals responsible for oxidative stress in the aqueous phase of OSPW.
منابع مشابه
Endocrine disruption and oxidative stress in larvae of Chironomus dilutus following short-term exposure to fresh or aged oil sands process-affected water.
Understanding the toxicity of oil sands process-affected water (OSPW) is a significant issue associated with the production of oil from the Alberta oil sands. OSPW is acutely and chronically toxic to organisms, including larvae of Chironomus dilutus. In this study, fresh OSPW ('WIP-OSPW') was collected from the West In-Pit settling pond and aged OSPW ('FE5-OSPW') was collected from the FE5 expe...
متن کاملToxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas).
Due to a policy of no release, oil sands process-affected water (OSPW), produced by the surface-mining oil sands industry in North Eastern Alberta, Canada, is stored on-site in tailings ponds. Currently, ozonation is considered one possible method for remediation of OSPW by reducing the concentrations of dissolved organic compounds, including naphthenic acids (NAs), which are considered the pri...
متن کاملPeroxisome Proliferator-Activated Receptor γ is a Sensitive Target for Oil Sands Process-Affected Water: Effects on Adipogenesis and Identification of Ligands.
Identification of toxic components of complex mixtures is a challenge. Here, oil sands process-affected water (OSPW) was used as a case study to identify those toxic components with a known protein target. Organic chemicals in OSPW exhibited dose-dependent activation of peroxisome proliferator-activated receptor γ (PPARγ) at concentrations less than those currently in the environment (0.025× eq...
متن کاملEffectiveness of ozonation treatment in eliminating toxicity of oil sands process-affected water to Chironomus dilutus.
Water soluble organic compounds (OCs), including naphthenic acids (NAs), are potentially toxic constituents of oil sands process-affected water (OSPW) that is generated during extraction of bitumen from Alberta oil sands. Ozonation can decrease concentrations of OCs in OSPW. However, effects of ozonated-OSPW on multicellular organisms are unknown. A 10-day and a chronic exposure of Chironomus d...
متن کاملThe impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water.
Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 51 15 شماره
صفحات -
تاریخ انتشار 2017